BULK METALLIC GLASS

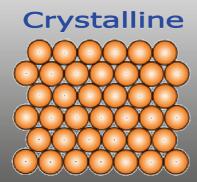
A force of our time.

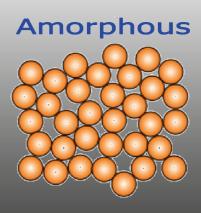
BULK METALLIC GLASS

A force of our time

Which materials can offer:

- The yield strenght of high end steels
- The elasticity of plastics
- Corrosion resistance like precious metals
- ISO 10993-5 compatibility
- The hardness of a tempered steel
- 6.0 in density


And which material gives you the possibility to:


- Being injected in a mold as a finished piece, with a timing reduced by 70% compared to the MIM metallurgy (Metal Injection Molding)
- Being hot printed adapting perfectly the final shape

BMG

A new class of solid not-crystalline materials, including amorphous metals, commonly called "metal glasses". The **BMG** has been studied and used for a long time in the military sector and in space research. The zirconium and copper **BMG** alloys have an irregular not-crystalline structure, really hard and elastic (also titanium, iron and platinum alloys will be avaiable in the future as **BMG** components).

Today **BMG** and his unique mechanical and physical features is in everyone's reach.

A force of our time

BULK METALLIC GLASS

BMG structure has some important features.

Let's start with the structure: being amorphous allows the material to avoid dislocations, typical problem for the crystalline ones. Compared to the crystalline alloys **BMG** increases 4 times endurance, decreases stifness, giving an high level of resilience (the capacity to keep energy for plastic deformation and to release it).

A test that can show easily these features is to let fall spheres on a stainless steel surface and a metal glass surface. The spheres that will bounce on the **BMG** surface will last much longer (on our website the testing video).

The stainless one is plastically deformed and this causes a worse bounce due to lost of kitetic energy of the sphere.

Another **BMG** feature is the presence of glass transition temperature like the traditional glasses, in fact it's impossible to check the viscosity of **BMG** and model or work it between 280°C. and 320°C. degrees.

Bulk Metallic Glass

- Complex shaping "in one step"
- Elasticity/spring properties
- High Strenght (1500 MPa)
- Tight tolerances (like CNC)
- High reflectivity (polishes surfaces)
- High Hardness (HRc 53)
- Corrosion resistance
- Bio compatibilità
- CNC machining possible

BULK METALLIC GLASS

A force of our time

BMG-Liste

Alloys

Vit 1b	Zr _{67,0 %}	Cu _{10,6 %}	Ni _{9.80%}	Ti _{8.80 %}	Be 3,80 %
Vit 601	Zr _{62,5 %}	Cu 31,0%	Ni 3,20 %	Al 3,30 %	Be _{0,10 %}
Vit 105	Zr 65,7 %	Cu 15,6%	Ni _{11,8 %}	Al 3,70 %	Ti 3,30%
Vit 106a	Zr _{70,1 %}	Cu 13,0 %	Ni _{9,90%}	Al 3,60%	Nb 3,40%
GMT	Ni _{76,0 %}	Cr _{8,50 %}	Nb _{5,20 %}	Pb _{9,40%}	Si _{0,30 %} B _{0,60}
Pt850	Pt 85,24 %	Cu _{7,10 %}	Ni _{2,36%}	P 5,30%	.,
JPL	Zr _{41,0 %}	Cu _{7,00%}	Al 3,00 %	Ti 43,0 %	Be 6,00 %

Properties

Alloys

Parameter	Units	Vit 1b	Vit 601	Vit 105	Vit 106a
Yield strenght	MPa (ksi)	1800 (261)	1795 (260)	1850 (268)	1800 (261)
Elastic modulus	GPa (10 ⁶ psi)	95 (13.8)	91 (13.3)		95 (13.8)
Fracture Toughness	MPa √m (ksi √in)	55 (50.0)	70 (63.7)	75 (68.3)	30 (27.3)
Density	g/cc (lbs./in³)	6.0 (0.217)	6.9 (0.249)	6.6 (0.238)	6.7 (242)
Glass transition (Tg)	C(F)	352 (665)	420 (788)	403 (757)	395 (743)
Crystallization (Tx)	C(F)	466 (871)	495 (923)	469 (876)	499 (930)
Mel temp (Tm)	C(F)	644 (1191)	753 (1387)	805 (1481)	837 (1539)

RS Acciai Srl Via dello Stagnaccio Basso 46/a 50018 Scandicci (FI) Tel +39 055 7318818 ra Fax +39 055 7311083 RS Acciai Srl Centro Servizi Viuzzo di Porto, 61 50018 Scandicci (FI) mail: rsalloys@rsalloys.eu

